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Abstract

Gaussian-Aperture and PSF photometry algorithm measures consistent colors for
extended sources such as galaxies that are largely independent of seeing. This tech-
note briefly presents the mathematical description of the algorithm and focuses on
its implementation in the Rubin Science Pipelines. This document also serves as a
reference for several of the analytical calculations that are tested in the unit tests.
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Consistent galaxy colors with
Gaussian-Aperture and PSF photometry

1 Introduction

Galaxy photometry is a hard problem, if not impossible. Unlike stellar photometry (in non-
crowded regions) where we know the true, intrinsic profile (a point source), we do not usually
know the profile for extended sources (galaxies). This is especially true at the outskirts of the
galaxies where they smoothly blend in with the sky background and we need to model the
wings of the PSFs accurately. Errors in either of these models lead to systematic errors.

Fortunately, having total fluxes is sufficient, and not necessary, to define colors of objects. It is
often easier to obtain color information frommultiband images, and is sufficient for obtaining
scientifically interesting quantities such as photometric redshifts. Total flux or magnitudes is
useful to quantify stellar luminosities (SED of total light emitted in all the bands) and masses.
However, in addition to a total magnitude in a reference band, ratios of fluxes in different
bands (colors) are sufficient for studies involved in photometric redshifts, stellar populations,
star-formation rates etc. They usually have different requirements, and will coincide for un-
resolved/point sources.

1.1 Notation

Throughout this technote, we use the following notation consistently.

• 𝑔(x): unobservable pre-seeing galaxy profile

• 𝐺(x): observable image of galaxy with a Gaussian PSF

• 𝐼(x): observed image of the galaxy with some PSF

• 𝑃 (x): PSF profile in the observed image 𝐼(x), including the pixel response.

• 𝐾(x): convolution kernel that converts 𝐼(x) to 𝐺(x), with a desired Gaussian PSF.

• 𝑤(x): aperture applied on the pre-seeing image 𝑔(x) (referred to as ‘pre-seeing aperture’)

• 𝐴(x): aperture applied on the observed image 𝐼(x) (referred to as ‘post-seeing aperture’)
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1.2 Consistent colors

Definition: If we apply the same weight to each star in a galaxy across all bands, then it is a
consistent color. In practice, this means use the same weight function 𝑤(x) across all bands.
If the galaxy has the same morphology in two bands, then a consistent color is the same as
’complete’ color, which is the ratio of total fluxes.

If we model a galaxy purely as a collection of stars, 𝑔(𝑏)(x) = ∑∗ 𝑓 (𝑏)
∗ 𝛿𝐷(x − x∗). Its total flux

𝐹 (𝑏) = ∫d2x 𝑔(𝑏)(x) = ∑∗ 𝑓 𝑏
∗ . We define complete color (or total color) as the color of a galaxy

obtained from its total fluxes. Given two passbands 𝑏1 and 𝑏2, a complete color is defined as

𝐶(𝑏1, 𝑏2) ≡ 𝐹 (𝑏1)
𝑤

𝐹 (𝑏2)
𝑤

=
∫d2x 𝑔(𝑏1)(x)
∫d2x 𝑔(𝑏2)(x)

(1)

It is worth noting that a complete color is not the same as the average color of its constituent

stars, i.e., 𝐶(𝑏1, 𝑏2) ≠ ⟨
𝑓 (𝑏1)

∗
𝑓 (𝑏2)

∗ ⟩∗

Given two passbands 𝑏1 and 𝑏2, a consistent color is defined as

𝐶𝑤(𝑏1, 𝑏2) ≡ 𝐹 (𝑏1)
𝑤

𝐹 (𝑏2)
𝑤

=
∫d2x𝑤(x)𝑔(𝑏1)(x)
∫d2x𝑤(x)𝑔(𝑏1)(x)

(2)

A complete color is a consistent color, as it corresponds to the choice of 𝑤(x) ≡ 1. A consistent
color defined with some weight 𝑤 is insensitive to 𝑤 and identical to complete color in the
absence of color gradients. While 𝐹 (𝑏)

𝑤 is not an estimator of total flux, the ratio 𝐹 (𝑏1)
𝑤 /𝐹 (𝑏2)

𝑤
(consistent color)matches the ratio of total fluxes𝐹 (𝑏1)/𝐹 (𝑏2) (complete color) if themorphology
is the same in the two bands, i.e., 𝑔(𝑏)(x) ∝ 𝐹 (𝑏)𝑔(x) for 𝑏 = 𝑏1, 𝑏2. While this is generally not true
for galaxies, it is true for stars and other point sources. In fact, 𝐹 (𝑏)

𝑤 = 𝐹 (𝑏) for point sources
if 𝑤(x) is normalized to have a unit amplitude. For extended sources, 𝐶𝑤(𝑏1, 𝑏2) is sensitive to
the weight function. This means that in the presence of a non-trivial weight 𝑤(x), galaxy color
is not invariant to moving the stars around within the galaxy, which the ratio of total fluxes
is insensitive to. The complete color is only sensitive to changes in the fraction of different
stellar populations within a galaxy.

Having a compact weight function allows extracting the color information from the bright re-
gions of a galaxy by upweighting the central regions. If the color gradients were absent, one
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could choose the formally optimal (or a near-optimal) weight function 𝑤(x) for each galaxy to
maximize the signal-to-noise ratio of its color estimate. However, since the color of a galaxy
is sensitive to 𝑤 in practice, varying 𝑤 for each galaxy may lead to difficulty in calibrating pho-
tometric redshift codes. Furthermore, choosing the shape1 of 𝑤 from the same image we
measure the flux from can lead to the estimate being non-linear and biased. It might be
preferable to use a weight function that is circular and slightly sub-optimal that is appropri-
ate to a population of galaxy. Having a variety of weight functions allows one to study the
population of stars as a function of radial distance.

2 Gaussian Aperture and PSF photometry

GAaP is essentially an aperture photometry algorithm that adjusts the aperture depending on
the seeing, such that the ”flux” measured is seeing-independent for a wide range of seeing.
Intuitively, if the PSF is large, then one needs to use a smaller aperture and vice versa. We
derive this formalsm mathematically below.

2.1 Formalism

The flux 𝐹𝐴 of a galaxy image 𝐼(x) with an aperture function 𝐴(x) is defined as

𝐹𝐴 ∶= ∫d2x𝐴(x)𝐼(x) (3)

= ∫d2x𝐴(x) ∫d2y 𝑔(y)𝑃 (x − y) (4)

= ∫d2x∫d2y𝐴(x)𝑔(y)𝑃 (x − y) (5)

= ∫d2y(∫d2x𝐴(x)𝑃 ∗(y − x)) 𝑔(y), (6)

where in the last step, we swapped the order of integration in the last equation and defined
a flipped PSF 𝑃 ∗ such that 𝑃 ∗(r) = 𝑃 (−r).

The pre-seeing aperture 𝑤(y) is related to the post-seeing aperture 𝐴(x) via the flipped PSF
𝑃 ∗.

𝑤(y) ∶= ∫d2x𝐴(x)𝑃 ∗(y − x) (7)

1It is unavoidable to use the detection peaks from the same image.
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Thus, if the post-seeing aperture 𝐴 is adjusted for seeing such as the pre-seeing aperture
remains the same for all bands, then the fluxes estimated with 𝑤 result in consistent colors.
Given the choice of the intrisic weight function (pre-seeing aperture) 𝑤(x), the post-seeing
aperture used for photometring the source is formally given as

𝐴(x) = (𝑤 ⊗−1 𝑃 ∗) (x), (8)

where ⊗−1 denotes deconvolution operator. Thus, the use of this post-seeing aperture for
photometring the source is designed to give colors that are insensitive to the seeing (DMS-
REQ-0276).

InGAaP algorithm, the pre-seeing aperture is chosen to be aGaussian function𝑤(x) = exp(− 1
2x

𝑇 𝑊 −1
int x)

for some 2×2 positive-definite 2 matrix 𝑊int. The choice of a Gaussian function over a flat top-
hat aperture allows one to obtain colors from the bright central region of the galaxywell above
the sky background and gives vanishingly lowweight to the tail that is hidden in the noise. Fur-
thermore, in addition to the SNR argument, the central parts of the galaxies are redder in color
as they contain older population of stars. These populations are relatively easier3 to obtain
photometric redshifts from, thereby increasing the fidelity of the photo-z measurements.

Rather than using the formal solution to find the post-seeing aperture, the implementation
of the algorithm uses a two-step procedure:

1. Convolve the image 𝐼(x) by a kernel function 𝐾 to obtain an PSF-Gaussianized image
𝐺(x) which has a circular Gaussian PSF of size 𝑝

2. Photometer the resulting imageusing the𝐴(x) = exp(− 1
2x

𝑇 (𝑊int − 𝑝21)−1x), where𝑊int−
𝑝21 is positive-definite.

Hence, the algorithm is named Gaussian-Aperture and (Gaussian) PSF.

Based on Eq. A16 of Kuijken et al. (2015), the GAaP flux with an aperture parameter W is
2A 2 × 2 positive-definite matrix 𝑀 is a symmetric matrix with real entitites if and only if x𝑇 𝑀x > 0 for all x ∈ ℝ2.

In practice, this implies 𝑀11 > 0, 𝑀22 > 0 and det(𝑀) > 0.
3https://project.lsst.org/meetings/law/sites/lsst.org.meetings.law/files/Galaxy%20Photometry%20-%20Konrad%20Kuijken.pdf
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defined as follows:

𝐹W ≡ ∫d2x 𝑔(x)exp(−1
2x

𝑇W−1x) (9)

= 1
2

det(W)1/2

det(W − 𝑝21)1/2 × 2 ∫d2x𝐺(x)exp(−1
2
xT(W − p21)−1x) , (10)

where 𝐺(x) is the image of 𝑔(x) after convolution by a Gaussian PSF of size 𝑝. Given a set
of passbands {𝑏1, 𝑏2, … 𝑏𝑛}, the corresponding 𝐹Ws can be used to obtain any of the (𝑛 − 1)
independent color terms.

In the limit 𝑔(x) → 𝐹 𝛿(x), the GAaP flux 𝐹W equals 𝐹 . The fact that GAaP fluxes are estimates
of total fluxes for point sources is a useful one in practice. This enables the use the standard
photometric calibrations developed for other flux measurement algorithms usable for GAaP
as well.

3 Implementation in the Rubin science pipelines

GAaP algorithm is implemented as a measurement plugin that can be run in forced mode.

3.1 Definitions

This subsection consists the definition of various configuration parameters, internal variables
and flags that may be needed to use the algorithm effectively.

The size 𝑝 is set as some factor 𝑓 times the trace radius of the original PSF for a given source in
a given band. The scaling factor 𝑓 is enforced to be larger than unity to avoid deconvolution.
The scaling factors can be configured using the scalingFactors field. By default, 𝑓 = [1.15].

We use the basic building blocks in modelPsfMatchTask to Gaussianize the PSF, with one key
difference: by default we convolve the PSF-matching kernel in Fourier space to speed up the
computation (thismay be configured to carry out the convolution in real-space or overlap-add
method if preferred). Occasionally, the solution for the kernel fails, and no measurement is
possible for any values of 𝑊int. We mark such failures by setting _flag_gaussianization.

The factor multiplying the integral, especially det(W − 𝑝21)1/2, is required to keep 𝐹W PSF-
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independent. Internally, we refer to this factor, the square root of the ratio of determinants,
as fluxScaling. We scale the instFlux value from the computeFixedMomentsFlux method with
fluxScaling.

The simplest case of apertures are those described by pre-determined circular apertures
Wint = 𝜎2

𝑤1 for some 𝜎𝑤. The set of 𝜎𝑤 is configurable using sigmas parameter. For such
circular apertures, fluxScaling = 1

2
𝜎2

𝑤
𝜎2

𝑤−𝑝2 , whereW = 𝜎2
𝑤1. A necessary condition for the mea-

surement to be valid is that 𝜎𝑤 must be larger than 𝑝. When this condition is not met, usually
for bad seeing images, _flag_bigPsf is set for the corresponding measurement.

Additionally, we also use one elliptical aperture that is adapted to the galaxy. We adopt the
following heuristic to increase the signal-to-noise ratio: The post-seeing aperture is chosen to
be the adaptive moments of the source in the reference band. For the purpose of optimal
photometry alone, we assume that the PSF in the reference band is Gaussian and add the
PSF adaptive moments to the source adaptive moments to obtain 𝑊int. The intrinsic aperture
𝑊int is then used in all measurement bands. This simple heuristic gives us a near-optimal
photometry. This differs from true optimal aperture depending on how non-Gaussian the PSF
is. However, given the low sensitivity to the aperture parameters, the heuristic aperture leads
to an increase in SNR, with the improvement being larger for galaxies with larger ellipticity
values.

3.2 Evaluating the integrals

The integral in Eq. 10 is computedusing computeFixedMomentsFlux4 bypassing the PSF-Gaussianized
image and shape parameter (W − 𝑝21). This method evaluates the Gaussian weight at pixel
centers and computes the inner product with the pixel values of the PSF-Gaussianized image.
For Nyquist-limited samples of band-limited function,

∫d2𝑥 𝑓(𝑥)𝑔(𝑥) = ∑𝑛
𝑔[𝑛] 𝑓[𝑛] (11)

Even though the observed image will be band-limited to some extent, the Gaussian aperture
we apply is not. As a result, the inner product will be biased estimator of the integral. In par-

4Note: computeFixedMomentsFlux computes the flux of an image 𝐼(x) weighted by an aperture Q as
2 ∫d2x 𝐼(x)exp(− 1

2x
𝑇Q−1x), with a factor 2 in the normalization. This is such that if 𝐼(x) is a Gaussian with shape

Q and has a total flux 𝐹 , the integral evaluates to 𝐹 .

D R A F T 6 D R A F T
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Figure 1: Plots of the ratio of measured flux to the expectation from analytical expression vs.
size of the pre-seeing weight function (𝜎𝑤) for five different source sizes (𝜎𝑠). The right panel
shows the ratio with the sinc interpolation turned on, and the panel on the left shows with-
out. The solid lines show the mean ratio when averaged over all possible sub-pixel offsets.
The filled regions show the 16-84 percentile region while the dashed lines show the mini-
mum and maximum possible values. The dark and the light gray shaded horizontal regions
represent 0.1% and 1% relative errors in the measured flux, respectively.
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ticular, the measured flux becomes sensitive to where the centroid is located with a pixel. In
principle, one needs to interpolate the pixels to form a continuous function, and then inte-
grate the function with the Gaussian aperture (see Bickerton & Lupton (2013)). However, this
procedure is computationally expensive.

To quantify whether we can nevertheless make this approximation, and if so, when this ap-
proximation breaks down, the following setup is used. For simplicity, consider a circular Gaus-
sian source with an effective PSF (includes pixel response) such that the observed profile is
a circular Gaussian. We denote its size (in pixels) as 𝜎𝑠 and the size (in pixels) of the circular
Gaussian weight function by 𝜎𝑤. The image is rendered with sub-pixel offsets uniformly vary-
ing from zero to half a pixel offset in either directions. The centroid of the Gaussian aperture
coincides with the centroid of the source for each of the cases. The GAaP flux is measured
for a range of 𝜎𝑤 and 𝜎𝑠 values and the results are plotted in the left panel of Fig. 1. For large
values of 𝜎𝑠 and 𝜎𝑤, the measured flux is in agreement with the value expected analytically.
For 𝜎𝑤 ≲ 0.7, the measured flux becomes strongly dependent on the sampling locations, even
for large values of 𝜎𝑠. After marginalizing over the centroid locations, the mean flux is still an
underestimate of the expected value.

If we instead interpolate the pixels with a sinc function to form a continuous function and
then evaluate the integral, the measured flux is in much better agreement with the analytical
expections. Adapting the method suggested in Bickerton & Lupton (2013) for Gaussian aper-
tures, we compute a set of coefficients to take inner product with the pixel values of the image.
The measured fluxes agree with the expectation for large (𝜎𝑠 ≳ 2) and biased only slightly for
𝜎𝑠 ∼ 1 when 𝜎𝑤 ≲ 0.6

If we measure its flux from pixellated images with a circular Gaussian aperture of size 𝜎𝑤 pix-

els, the expectedGAaP flux is 𝐹 (1 + 𝜎2
𝑠

𝜎2
𝑤 )

−1
(see Eq. 26). Fig. 1 shows that with the interpolation

turned on, themeasured flux is largely insensitive to the sub-pixel offset of the centroid unless
both the source and the aperture are narrow, where a small negative bias is seen. Without the
interpolation, a large scatter can be seen for 𝜎𝑤 ≲ 0.7 pixels due to the location of the centroid
within the central pixel, with the mean marginalized over the centroid location shows a neg-
ative bias as well, even for large sources. computeFixedMomentsFlux turns on the interpolation
automatically when 𝜎𝑤 ≤ 0.5 pixels. This will cause the measured flux to change abruptly that
may be significant for small sources.

For 𝜎 ≳ 0.85 pixels, the flux is accurate to better than 0.1%. In practice, we do not expect to
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use such narrow Gaussian apertures.

3.3 Estimating noise covariance

Let us calculate the covariance 𝐶𝐺 between the errors on two pixel values 𝐺(x) and 𝐺(y).
Rewriting Eq. A9 of Kuijken et al. (2015), we get

𝐶𝑜𝑣(𝐺(x), 𝐺(y)) = ∫ ∫d2x′d2y′ 𝐶𝑜𝑣(𝐼(x′), 𝐼(y′)) 𝐾(x − x′)𝐾(y − y′) (12)

In KiDSpapers, including Kuijken et al. (2015), translational invariance is assumedand𝐶𝑜𝑣(𝐼(x′), 𝐼(y′))
is expressed as a function of (x′−y′) alone and an appropriate covariancematrix is constructed
empirically.

However, in Rubin science pipelines, we keep track of the variance (and only variance) per
pixel. So, our model for 𝐶𝑜𝑣(𝐼(x′), 𝐼(y′)) = 𝜎2(x′)𝛿𝐷(x′ − y′), where 𝜎2(x′) is given by the vari-
ance plane. This is an approximation, as the noise is correlated on the coadds. However, we
proceed with the information we have available. Substituting this in the above equation, we
get

𝐶𝑜𝑣(𝐺(x), 𝐺(y)) = ∫d2x′ 𝜎2(x′)𝐾(x − x′)𝐾(y − x′) (13)

The kernel 𝐾 is expected to be compact, and if the variance plane is slowly varying, we can
approximate 𝜎2(x′) by the variance value at the centroid of the source, say 𝜎2. This approxima-
tion is further justified because of Gaussian weighting we will employ in Eq. 15, which makes
the effective kernel even more compact. Redefining x′ → x − x′ (d2x′ → d2x′ because the
dimensionality is even), we get

𝐶𝑜𝑣(𝐺(x), 𝐺(y)) ≈ 𝜎2𝜉𝐾 (r) ≡ 𝐶𝐺(r), (14)

where r = y − x. Thus, the covariance is the auto-correlation function of the kernel 𝐾 𝜉𝐾 (r) ≡
∫d2x𝐾(x)𝐾(x+r) scaled by the variance 𝜎2 at the location of the source. The auto-correlation
function is computed by the _computeKernelAcf static method.

D R A F T 9 D R A F T
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3.4 Estimating uncertainties

Eq. A17 of Kuijken et al. (2015) says

Var(𝐹W) = det(W)
det(W − 𝑝21)

𝜋 det(W − 𝑝21)1/2
∫d2x𝐶𝐺(x)exp(−1

4x
𝑇 (W − 𝑝21)−1x) . (15)

Note the missing factor of 21/2, which is an error in Kuijken et al. (2015). Since we represent

𝐶𝐺(r) = 𝜎2𝜉𝐾 (r), (16)

we get

Var(𝐹W) = det(W)
det(W − 𝑝21) (

1
2)

2
× 4𝜋𝜎2 det(W − 𝑝21)1/2 × ∫d2r 𝜉𝐾 (r)exp(−1

2r
𝑇 (2(W − 𝑝21))−1r) .

(17)
We categorize them into three terms, separated by ×.

1. The naive calculation of flux variance by computeFixedMomentsFlux yields themiddle term
4𝜋𝜎2 det(W − 𝑝21)1/2 (given by instFluxErr2).

2. The factor 1
4

det(W)
det(W−𝑝21) appears because of the scaling factor in 𝐹W (Eq. A16 of Kuijken

et al. (2015)).

3. The square root of the integral is computed by _getFluxErrScaling and referred to as
fluxErrScaling. This is the actual contribution due to correlations in the noise intro-
duced by PSF-Gaussianization procedure. This is computed using computeFixedMoments-

Flux on the auto-correlation function, with 2× the shape parameter of aperture used to
measure 𝐹W.

If the PSF had been Gaussian to begin with, or if we were neglecting the effects of cor-
related noise on flux uncertainties, 𝐾(r) = 𝛿𝐷(r). This leads to the integral evaluating to
1.

D R A F T 10 D R A F T
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3.4.1 Alternative representation

Note that from the definition of 𝜉𝐾 (r), it follows that

∫d2r 𝜉𝐾 (r) = ∫d2r ∫d2x𝐾(x)𝐾(x + r) (18)

= ∫d2x𝐾(x) ∫d2r𝐾(x + r) (19)

= [∫d2x𝐾(x)]
2

(20)

In a similar manner, the integral for fluxErrScaling can also be expressed as

∫d2r 𝜉𝐾 (r)exp(−1
2r

𝑇 (2(W − 𝑝21))−1r) = [∫d2x∫d2y𝐾(x − y)exp(−1
2y

𝑇 (W − 𝑝21)−1y)]
2

.
(21)

The proof follows by considering ∫d2x𝑓(x) = ̃𝑓 (0), where ̃𝑓 is the Fourier transform of 𝑓 .

4 Concluding remarks

This technote presents the Gaussian Aperture and PSF photometry algorithm and covers var-
ious technical details with regards to its implementation in the Rubin Science Pipelines [PSTN-
019]. This note also captures various calculations that are used in testing the code, since they
are cumbersome to leave as comments within the code itself.
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Software: Optical Survey Pipeline Reduction and Analysis Environment, Project Science Techni-
cal Note PSTN-019, NSF-DOE Vera C. Rubin Observatory, URL https://pstn-019.lsst.io/,
doi:10.71929/rubin/2570545

B Acronyms

Acronym Description
DMS-REQ Data Management System Requirements prefix
DMTN DM Technical Note
GAaP Gaussian Aperture and PSF
PSF Point Spread Function
PSTN Project Science Technical Note
SED Spectral Energy Distribution
SNR Signal to Noise Ratio
photo-z photometric redshift

C Gaussian integrals

The integrals in computing various GAaP quantities can be computed analytically when the
PSF and the intrinsic sources are Gaussian. We will derive the analytical results that are used
in the unit testing of the code.

For an intrinsic Gaussian source 𝑔(x) of total flux 𝐹 and shape S and a Gaussian aperture of
shapeW, it follows from the definition 10 that its GAaP flux is

𝐹W = ∫d2x [
𝐹

2𝜋 det(S) exp(−1
2x

𝑇 S−1x)]exp(−1
2x

𝑇W−1x) (22)

= 𝐹
2𝜋 det(S) ∫d2x exp(−1

2x
𝑇 (S−1 + W−1)x) (23)

= 𝐹
2𝜋 det((S−1 + W−1)−1

)
2𝜋 det(S) (24)

= 𝐹 1
det(S)det(S−1 + W−1)

(25)

= 𝐹 det(S−1)
det(S−1 + W−1)

(or) 𝐹
det(1 + SW−1)

. (26)
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If S = 𝜎2
𝑠1 andW = 𝜎2

𝑤1, then 𝐹W = 𝐹 (1 + 𝜎2
𝑠

𝜎2
𝑤 )

−1
.

Suppose 𝐼(x) has a circular Gaussian PSF of size 𝑠 and the target PSF is a Gaussian PSF of size
𝑝 = 𝑓𝑠 (𝑓 > 1), then the kernel 𝐾 is also a Gaussian of size 𝑠(𝑓 2 − 1)1/2. In the GAaP plugin, the
values for 𝑓 are given by scalingFactors.

Since flux-conservation implies ∫d2x𝐾(x) = 1, we can immediately write

𝐾(x) = 1
2𝜋(𝑓 2 − 1)𝑠2 exp(− x𝑇x

2(𝑓 2 − 1)𝑠2 ) (27)

The auto-correlation function 𝜉𝐾 (r) is then given by

𝜉𝐾 (r) = 1
4𝜋(𝑓 2 − 1)𝑠2 exp(− r𝑇 r

4(𝑓 2 − 1)𝑠2 ) . (28)

This is easy to see by first recognizing that 𝜉𝐾 (r) must be a Gaussian with size √2 times larger
than that of𝐾 and the normalization factor follows that 𝜉𝐾 (r)must integrate to 1 if𝐾 integrates
to 1 (see Eq. 20).

The square of the fluxErrScaling parameter is then given by the Gaussian integral

∫d2r 𝜉𝐾 (r)exp(− r𝑇 r
4(𝜎2 − 𝑝2)

),

where 𝜎 is the size of the Gaussian aperture for the pre-seeing source 𝑔(x). In the GAaP plugin,
these values are given by sigmas config parameter.

The exponents of the Gaussians is simplified as follows.

−r𝑇 r
4 (

1
(𝑓 2 − 1)𝑠2 + 1

(𝜎2 − 𝑓 2𝑠2)) = −r𝑇 r
4 (

𝜎2 − 𝑠2

𝑠2(𝑓 2 − 1)(𝜎2 − 𝑓 2𝑠2)) (29)

, where 𝑝 is replaced by 𝑓𝑠. Evaluating the Gaussian integral, we get

fluxErrScaling2 = 1
4𝜋(𝑓 2 − 1)𝑠2 × 𝜋4𝑠2(𝑓 2 − 1)(𝜎2 − 𝑓 2𝑠2)

𝜎2 − 𝑠2 (30)

= 𝜎2 − 𝑓 2𝑠2

𝜎2 − 𝑠2 (31)
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As a consistency check, we get fluxErrScaling = 1 for 𝑓 = 1, i.e., if we do not carry out the
PSF-Gaussianization procedure. For 𝑓 > 1, fluxErrScaling < 1. As an aside, if 𝜉𝐾 (r) ≥ 0
for all r (as in the Gaussian kernel case), fluxErrScaling is guaranteed to be less than 1. In
other words, the naive flux uncertainty overestimates the true uncertainty. For naive errors
to be an underestimation of true errors, it is necessary that the kernel should be negative
for sufficiently small |r|. Intuitively, this makes sense; non-negative valued kernel smoothes
the noise in the image, reducing its power, whereas as kernel with both positive and negative
values has the potential to amplify the random fluctuations in different pixels.
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